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OPTIMIZATION PROBLEMS:

DUALITY AND MULTIPLIER METHODS

Final Scientific Report on grant -AFOSR-77-3204

R.T. Rockafellar, Principal Investigator

February 19, 1982

Introduction. In the five years covered by this grant, January 1977 through

December 1981, a total of twenty research articles were written for publication in

technical journals, as well as two books and a Ph.D. thesis. Although these are

addressed to a wide variety of optimization problems, they have a common theme:

the characterization and computation of solutions by methods based on subgradient

analysis and duality. Fundamental advances in theory are embodied in this work.

The following topics will be discussed individually below: Accession For

A. Multiplier Algorithms in Nonlinear Programming IT-s f].:A&I

B. Multistage Stochastic Optimization Ju - . _

C. Networks and Monotropic Programming Methods .

D. Generalized Subgradients and Nonsmooth Optimization D -. Code,

E. Marginal Values and ensitivity Analysis Di: i} c d/or
OPY Dist i'ia

F. Genericity of Optimality Conditions Sci

G. Optimal Control of Dynamical Systems

References [1], [2], etc., are to work performed under this grant, while references

[a], [b), etc., are to other publications; all are listed at the end.

A. Multiplier Algorithms In Nonlinear Programming.

A general nonlinear programming problem in finitely many variables has the

form

Appnved for public release?
distribution unlimited.

82 04 06 028
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Minimize f0(x) over all xeX satisfying

(1) fi) 0 foriul,...,s,

S0 for l8l..m

where Xc and f :Rn  R, i-0,1,...,m. A large number of techniques have been

proposed over the years for solving such problems, but among the most popular and

effective nowadays are the so-called multiplier methods, initiated independently

by M.R. Hestenes [a] and M.J.D. Powell [b] in 1969 and developed extensively in the

mid-70's, especially by D. Bertsekas [c] and R.T. Rockafellar [d], [e]. The virtue

of these methods is that they avoid the difficulties of dealing directly with

nonlinear constraints by replacing (1) by a certain sequence of unconstrained mini-

mization problems. In this there is a similarity with penalty methods, and indeed,

multiplier methods have largely supplanted the latter because they exhibit the

same virtues along with better convergence rates and greater numerical stability.
1'

Multiplier methods involve Lagrange multipliers in addition to a penalty

parameter. They are based on the study of the augmented Lagrangian function for

problem (1), namely

L(x,y,r) fo(x) + E {Yifi(x) + -irfi(x)2)

(2) 1
Yi fl(x) + rfi(x) if fi(x) a -Yi/r

+ 1 2 /
i=l - Y Yi if fi(x) S -Y/r i

for xEX, yERm, r > 0.

This contrasts with the ordinary Lagrangian function

(3) (x,y) - fo(x) + Yifi(x)

for xGX, yER x R - s
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in furnishing saddle point representations of optimal solutions to (1) (augmented

duality) even in nonconvex programming. (This was established in [d] by Rocka-

fellar, who also was responsible for showing that formula (2) was the right way

to incorporate inequality constraints into the augmented Lagrangian.)

The basic form of the Hestenes-Powell multiplier method begins with a choice

0 0of x ,y and r0  and in the general step takes

k+lk

k argmin L(x,y ,rkr,xEX

(4) k+l k+l k
y VyL(x ,y ,rk), rk+l a rk -

Here the notation means that x is an approximate minimizer of the function

L(,y ,rk) on X. The set X is supposed to have a simple form (e.g. ak

generalized rectangle), so this minimization, which uses x as the starting

point, can be effected by means of the highly efficient algorithms now known

for (essentially) unconstrained optimization. The main questions concern the

stopping rule that should be used in the approximate minimization, the strategy

in updating the penalty parameter, and the kinds of convergence that can be

obtained. Generally speaking, it is possible to obtain global convergence at an

arbitrarily good linear rate, without having rk - . For this, however, one must

use a stopping criterion of the form

k+l k(5) Fk(xk) - inf Fk(X) C £k where Fk(x) L(x,y ,rk),
xEX

which requires good estimates of the greatest lower bound for L(.,yk ,rk) on X,

something not always available. 4IR O 4 AFFICL ; OF (AJ'sciMAIC O RSrV'r "AL TO DTrcThis technical repOrt has been revipw d 9n isaPproved for publi c rels-,e 1 AAFR
Ddstribut~oIs unlimited,

Chief. TohnIlai rnf ortion Division
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The two articles [3] and [11] on this subject that were produced under this

grant propose a new version of the multiplier method that gets around these

difficulties with the stopping criterion and, as a byproduct, makes it possible

to solve an important class of "extended" convex programing problems, called

variational inequalities. The rule in the new version involves another parameter

sk > 0:

x k+ l  argmin {L(x,ykrk) + (1/2sk),rx-xkk) ,
(6) xEX

k+l V y L(xk+l k rk+l ry y ,y ,rk) rk 1 rk, Sk+l 5 k.

This is just as easy to execute and leads to the same nice convergence properties.

Its big advantage is that it is amenable to a stopping criterion of a much more

convenient type:

(7) lproj VFk(x k+l) Ek

where Fk(x) - L(x,yk,rk) + (1/2 sk)11x-xk 12

the projection being that of the gradient VFk(x k+ ) on the tangent cone to X

k+l
at x (which for the usual sets X is simple to compute).

A very interesting feature of the modified rule is that everything can be

carried out in terms of the mappings VFk  alone. The function values Fk(x)

don't need to play any role. This being the case, it is possible to replace

b the gradient Vf0  in problem (1) by a much more general kind of mapping

Rn T k
A:R n - . The sequence (xk,y ) generated by the algorithm then converges

(under mild assumptions) to a solution (x,y) to the so-called variational
inequality obtained when A(x) is substituted for Vf0(x) in writing down the

Kuhn-Tucker conditions for optimality in (1).
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All this works in particular when A is a monotone mapping in the sense

that

n[A(x') - A(x)]-[x'-x . 0 for all x',xER

Indeed, much of the theory of multiplier methods rests on the study of such

mappings, so this is a very natural extension. It provides a new computational

handle on many problems in partial differential equations that can be represented

as variational inequalities.

Much remains to be done in connection with these problems and their special

structures. The relationship between the parameters rk and sk, and the

strategies for updating them, would benefit from further study too.

B. Multistage Stochastic Optimization. A common but eifficult situation to deal

with in applications of optimization is the kind where decisions must be made

here and now, but the outcomes of these decisions will be strongly affected by

future events about which there is only statistical information. Usually,

recourses are available in the future in order to correct the effects of the

here-and-now decisions, after the true situation becomes better known. But the

cost and scope of the recourses may depend too on what has to be decided in

advance. Multistage stochastic optimization problems, also called stochastic

programming problems or recourse problems, are an attempt to model this state

of affairs.

To keep things simple, let us imagine a situation where at times t-1,2,...,N

a vector xt must be chosen from a space R in response to an observation

wt  (which is a random vector variable with known distribution, at least in the
A
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most elementary versions of the model). Pre3ent decisions cannot depend on

future observations, so a decision policy must be a function of the special form

x(w) - (xI(w 1),X2(wlw 2), . , xN(wlw 2, ,N))

Such a function x is said to be nonanticipative. The problem is to minimize,

over all nonanticipative functions x, an expected cost

E{ fO(w,x(w)))

subject to constraints of the form

(8) fi(w,x(w)) S 0 almost surely, il,...,m.

The theory of such problems was developed by Rockafellar and Wets in the

two-stage case (N-2) in a series of papers ff], [g], (h], [i]. The foundation

for the N-stage case was laid in [j].

Article [1], written under the present grant, derives for the first time the

existence of Lagrange multipliers y (w) for the constraints (8) as a charac-

terization of the optimal decision function x. It develops special properties

in the case of separable constraint functions

fi(w,x(w)) = fil(wliI(w1)) + fi2(w2 ,x2 (wvvw2)) +

and explores certain connections with stochastic optimal control. Convexity is

assumed throughout.

The results are very complete and satisfying as regards optimality conditions

and their interpretation, and they can fairly be viewed as a landmark in stochastic

optimization on such terms. Nevertheless, they are only theoretical results.

They are an important step towards computation, but much work on actual algorithms
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will be needed before problems of this highly important kind can be solved

practically and efficiently. Large-scale decomposition techniques in terms of

the Lagrangian price vectors y(w) will be required. The theory of nonconvex

problems will eventually need to be developed too.

C. Networks and Monotropic Programming.

A monotropic programming problem is an optimization problem in which a con-

vex function having a representation of the type

(9) F(ul...,u ) " E ni f (a lUl+a 2u 2+ ""'+ajm um+b )m ji jl 22 mm

is minimized subject to linear equality and inequality constraints on the variables

U1 ,... um . Linear and quadratic programming problems are a special case, as are

separable convex programming problems. Indeed, any monotropic programming problem

can be reduced to the canonical form

(10) minimize f1 (x1 )+...+fN(

over all x - (xl,.. .,xN)EKcRN satisfying

x1EC1  for J=1,...,N,

where K is a linear subspace of RN  (described by a system of homogeneous

linear equations), each C is a real interval, and f is a closed proper

convex function of a single real variable, having C1  as its effective

domain. Associated with this is a canonical dual problem of the same sort:
4

(11) maximize -g (yl)-..-SN(yN)

over all yE(yl,...,yN)ELcRN satisfying

y EDj for J-=,...,N,
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where L is the linear subspace orthogonal to K (expressible by an adjoint

system of equations), and gj is the convex function on R conjugate to f

the interval D is the effective domain of g J"

This kind of duality, which can be utilized almost as fully and explicitly

as linear programming duality (which, by the way, it subsumes) is a characteris-

tic feature of monotropic programming. It makes possible a whole range of methods

and approaches that otherwise would not be available. This is why such problems

need to be recognized and treated as a class apart.

The main theoretical guideline for general monotropic programing comes

from network programing, namely the case where in represents the flow in the

th
j arc of a certain directed graph and yj is the "tension" across the arc. In

that setting, K is the space of circulations (flows conserved at every node),

and L is the space of tensions representable as potential differences (relative

to some potential function defined on the set of nodes of the graph). An enor-

mous number of practical problems in operations research, including logistics,

warehousing, project scheduling and the analysis of pipe systems, fall into this

category.

Article [13] introduces basic descent methods for monotropic programming

problems. It demonstrates that any such method, applied to either problem (10)

or (the negative of) problem (11), as is always possible due to total symmetry,

will inevitably solve both (10) and (11). This computational circumstance leads

to a new theoretical result: a constructive proof of the duality theorem for

monotropic programming, i.e. the fact that the optimal values in (10) and (11)

must be equal unless both problems fail to be feasible. This theorem is a power-

ful tool in the design and interpretation of algorithms. It holds a unique position

in the duality literature in not requiring either the linearity of objectives or

any kind of strict feasibility.
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Algorithms in monotropic programming have a distinctly combinatorial nature:

descent is in special directions induced by a matroidal substructure associated

with the linear subspaces K and L. This subject has until nov not been

investigated or even recognized as a unified whole (although examples in linear

and network programming are well known), and herein lies the novelty and signi-

ficance of the monograph [16]. There is too much in this work to be described

here. For a better idea of the contribution, the preface to [16], the table of

contents and the section of comments at the end of each chapter may be consulted.

Many new computational methods and conceptual innovations are provided. The book

includes the first comprehensive treatment of nonlinear network flow problems

and separable convex programming.

D. Subgradient Analysis and Nonsmooth Optimization.

This is another big 'ubject on which far too much has been accomplished in'P

the five years under the present grant for there to be any hope of giving more

than a brief indication here. Motivation starts with the fact that optimization

problems very frequently involve functions that are not differentiable, at least

not everywhere.

In direct terms, one can run into cost functions that are merely piecewise

smooth (the derivatives jump at certain breakpoints), as well as "max functions"

of the form

(12) h(x) a max hi (x) (I - some index set)
iEI

whose graphs exhibit "corner points" of a rather complicated sort. Convex func-r
tions on R are always representable as max functions (12) with each hi affine

le (i.e. linear-plus-s-constant), and as this suggests, they are not necessarily

J

i _____
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differentiable. Thus economic models in which convexity is postulated, but

differentiability is less natural as a fundamental assumption, fall under the

heading of "nonsmooth optimization".

Nondifferentiable functions also arise indirectly. In linear programming,

for instance, the optimal value

(13) w(b) = inf{cxjx Z 0, Ax b}

is only piecewise linear with respect to the vector b. The role of the optimal

solutions to the dual problem, as vectors of "shadow prices" associated with the

resources in the primal problem, cannot be understood without reference to this

potential lack of differentiability of w. More generally, the quantity

(14) p(v) - inf{f 0 (V,x)1f1 (v,x) 5 O,...,fm(V,X) S 0},

giving the optimal value in a constrained minimization problem in x which depends

on a parameter vector v, is generally not differentiable with respect to v,

even if the functions fo,fl,...,fm themselves are infinitely smooth.

Exact penalty methods for solving nonlinear programming problems, as well

as decomposition techniques and duality-based computational schemes of the sort

that is now very popular in branch-and-bound approaches to combinatorial problems,

typically lead to the consideration of auxilliary functions that are not smooth.

Sometimes these functions take on quite a complicated form, as in the case of

problems of engineering design where specifications can be met within certain

tolerances by a "tuning" process after basic manufacture; see E. Polak (k] (also

introduction to 1121).
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Nondifferentiable convex functions have been treated successfully for many

years. Many of the techniques were developed by R.T. Rockafellar and presented

in his book Convex Analysis [R]. The big breakthrough for nonconvex functions,

however, came with the thesis work of F.H. Clarke under a predecessor of the

present grant. Clarke was able to define subgradients of arbitrary lower semi-

continuous functions on Rn  is a manner totally in harmony with the convex case

and the classical analysis of smooth functions; see [m). Clarke's approach was

somewhat roundabout, though, and his definitions seemed to depend unduly on the

n
Euclidean norm in R , which tended to hamper applications, not to mention

extensions to problems in infinite-dimensional spaces.

One of the main accomplishments under the present grant has been the further

development and strengthening of the theory of generalized subgradients of non-

convex functions, especially with an eye towards certain applications that will

be discussed in the next section. Deep, fundamental results were obtained in

[6], [7], [81 and [18). These are long papers, and as mentioned above, it is

impossible to go into the details here. Fortunately that isn't necessary, since

the recently published monograph [12], also written under this grant, provides a

readable survey, in fact the very first to become available on this burgeoning

subject.

E. Marginal Values and Sensitivity in Nonlinear Programming.

The generalized subgradient analysis described above is ideally suited to

elucidating the properties of the sort of nonsmooth function appearing in

formulas (13) and (14). Let us imagine more generally a problem of the form

(P minimize fo(v,x) over all xED(v)
s-0 for i-l,...,s,

satisfying 
fi(v,x) + ui 

I:

0 for iis+l,...,m,
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where vERd and u-(ul,...,um)ERm. Denote the optimal value in (P ) by(u,v) y

p(u,v); then p is an extended-real-valued function on Rm x Rd, and under

mild assumptions p is lower semicontinuous.

Although no amount of differentiability assumptions on fo,fl,...,f m will

imply differentiability of p, there are special situations where it has been

known for some time that for a particular (u,;), the gradient Vp(u,v) exists.

These tend to be situations where problem (P-,;) has a unique globally optimal
uv

solution x, and this x happens to satisfy second-order optimality conditions

of the strongest kind. The interesting thing is that in such situations

(15) Vp(;,V) = (y,z) with Z - V (V,x,y),

where y is the unique Lagrange multiplier vector associated with x, and

(16) E(v,x,y) = f0 (v,x) + 1ml y f (v'x).

The reason this is so important is that it indicates a fundamental connection

between the dual variables that occur in optimality conditions for problem

(P- -) and the possible rates of change of the function p at (u,v).
u , v

Rates of change of p are called marginal values. They are significant in

the economic analysis of optimi..ation models where the components of u and v

represent production coefficients, costs and resource availabilities that may be

subject to fluctuation. They also have a role in determining the stability of

computational procedures which could be at the mercy of errors in the specifica-

tion of u and v. Furthermore, the ability to calculate, or at least estimate,

such rates of change is valuable in decomposition techniques.

For example, the real problem to be solved may be one in which only u is

given:
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(Qu )  minimize f0 (v,x) over all (v,x)EE

satisfying fi(v,x)+u IS$ 0 for i-,...,s,

I 0 for i-s+l,...,m.

For each v, the corresponding subproblem of minimizing in x can be identi-

fied with problem (P uv) in the case of D(v) = {xl(v,x)EE}. The master

problem then consists of minimizing p(u,v) with respect to v for fixed u.

A dicomposition of this sort may be very attractive in cases where (P u,v) is

particularly easy to solve for each (u,v) (a well known technique due to

Bender). However, it does necessitate the minimization of a nonsmooth function

p. Obviously, any information about directional rates of change of p is

crucial to the success of such an approach.

In certain situations in convex programming, it ias been known that formula

(15) could be stated in a more general way in terms of subgradients rather than

gradients, such subgradients being a way of describing one-sided directional

derivatives. The challenge of the work under the present grant was to extend

this somehow to nonconvex programming. Since one-sidcd derivatives of p in

the ordinary sense do not necessarily exist, even under smoothness assumptions

on the functions f and set D, basic theoretical developments were needed.

These have been described in the preceding section.

Article 114) provided a key by giving an exact formula for the subgrafient

set ap(u,v) in Clarke's sense in terms of extended limits of Lagrange multi-
k k

plier vectors y associated with optimal solutions x to neighboring problems

(P~~~ k s k(P k 0' as (U ) (u,;). In fact, the multiplier vectors in question

satisfy the saddle point condition for the augmented Lagrangian for (P k k).
U ,V

Thus the augmented Lagrangian described in the first section of this report was
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shown to have theoretical powers much beyond what might be expected simply from

its role in computations.

The next paper, [15], developed this formula into estimates for 8P,)

not just in terms of limits of multipliers for neighboring problems, but certain

multiplier vectors associated with optimality conditions for (P;,;) itself.

Actually, this was a two-way process: the mathematical machinery that bad

been devised was sensitive enough to allow optimality conditions to be stated

for solutions x to (P- -), even when the functions f are not smooth and

the multifunction D is merely of closed graph. These conditions were shown

to be necessary on the basis of differential properties of p, a new technique

in nonconvex optimization that sheds much light on the subject of "constraint

qualifications". In particular, multiplier rules of Clarke [ml and Hiriart-

Urruty [o] were sharpened in this way.

Many consequences will be obtained from the results in [15], due to their

depth and far-reaching generality. This work is the culmination of much effort.

Article [17] deals with certain more abstract versions of the formulas

in [15], true in part for infinite-dimensional problems. (The framework in [15]

is intrinsically finite-dimensional.)

An application to second-order conditions is carried out in [19]. The

formulas in [15] are refined in terms of second derivative information, and

in this way new results on necessary conditions for optimality are again

obtained.

4.
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F. Genericity of Optimality Conditions

Are the standard optimality conditions in nonlinear programing "usually"

satisfied? This is the question tackled in article [9]. The question is signifi-

cant because it is not possible, as a practical matter in most applications, to

check whether a given nonlinear programming problem (1) satisfies the constraint

qualifications and strengthened forms of the second-order optimality conditions

on which the analysis of many algorithms, etc., depends. One often hears the

argument that it is all right to base results on the assumption of such conditions,

because they hold in "typical" problems. But what does that assertion really mean?

One approach is to consider families of problems that depend on parameters,

like (P u,v) in the preceding section. These parameters can be imagined as random

variables with known distributions. The question can then be phrased as follows:

consider the set of all pairs (u,v) such that (P uv) has a locally optimal

solution which fails to satisfy certain conditions, and ask whether this set

represents an event of probability zero. Now as long as the distributions are

continuous, this can be subsumed by a much simpler question that doesn't involve know-

ledge of the particular statistical distributions of the parameters, namely, whether

the exceptional set of pairs (u,v) is negligible (i.e. of measure zero in the

Lebesgue sense).

An affirmative answer to this question was given in [9] and [10] for a funda-

mental class of parameterizations of nonlinear prograuming problems. This was

complemented by results in [14] on the genericity of uniqueness of optimal solutions.

J. E. Spingarn in his Ph.D. thesis [21] developed a more complete theory. It

was necessary to consider other classes of parameterizations in order to have a

?practical result, but it was not clear until his work, how to identify the ones
with the desired property that "almost all" problem in the parmterized family

---.
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were well-behaved. He used differential topology and other mathematical tools

to show how certain kinds of constraint structures could be kept fixed (unpara

meterized) without unbalancing the abundance of "good" problems over the "bad"

in a given family. These results have been published by Spingarn in [22) and [23].

Besides serving to justify certain approaches to computation, it is expected

that these ideas will have a role to play in multistage stochastic programming

(see B above). In that subject one has to treat, as a matter of course, nonlinear

programming subproblems which depend on random variables, and whose optimal solu-

tions therefore are random variables too. It would be impossible to get very far

without theoretical assurance that such optimal solution random variables can be

analyzed in terms of nice kinds of multiplier conditions almost surely.

G. Optimal Control of Dynamical Systems.

Three publications under the present grant come under this heading, [4], [5]

and [21]. In [4] the subject of duality in problems of optimal control is sur-

veyed, and also a number of recent developments concerning the existence of optimal

arcs and the conditions which characterize them. This exposition provides a good

introduction to the general approach to optimal control that can be made in terms

of extended-rcal-valued hamiltonians and subdifferential calculus.

Paper [5] describes in terms of models of optimal economic growth a number of

results and open questions concerning control problems over an infinite time

interval. The main question in such problems is what kind of behavior is naturally

optimal in a "self-sustaining' sense, i.e. in a steady-state manner that could be

prolonged indefinitely. The concepts that arise in this connection are interesting

for several basic reasons especially as a description of limiting behavior In

I .-- - - - - - - - ------
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various situations, even though real problems never involve infinite time.

State constraints are the subject of the most recent article (21]. It has

been shows that such constraints in an optimal control problem can cause jumps

(discontinuities) in the adjoint variables. Conversely, the possibility of jumps

in the primary variables can be linked to inherent state constraints on the adjoint

variables. This is what is proved in [21) through detailed analysis of a particu-

lar class of models of interest in economics.

si'
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